中國粉體網訊 氮化鋁具有熱導率高、高溫絕緣性和介電性能好、高溫下材料強度大、熱膨脹系數低并且與半導體硅材料相匹配、無毒等優點,具有良好的熱學、電學和機械等性能,是理想的陶瓷基板和電子封裝散熱材料。
氮化鋁陶瓷的核心和關鍵性能指標是高熱導率,盡管理論上氮化鋁熱導率可達到320W/(m·K),但由于氮化鋁中的雜質和缺陷造成實際產品的熱導率還不到200W/(m·K),因此提高氮化鋁的熱導率非常重要。
影響氮化鋁陶瓷熱導率的因素
影響氮化鋁陶瓷熱導率的主要因素有晶格的氧含量、致密度、顯微結構、粉體純度等。
氧含量及雜質
對于氮化鋁陶瓷來說,由于它對氧的親和作用強烈,氧雜質易于在燒結過程中擴散進入AlN晶格,與多種缺陷直接相關,是影響氮化鋁熱導率的最主要根源。在聲子-缺陷的散射中,起主要作用的是雜質氧和氧化鋁的存在,由于氮化鋁易于水解和氧化,表面形成一層氧化鋁膜,氧化鋁溶入氮化鋁晶格中產生鋁空位。使得氮化鋁晶格出現非諧性,影響聲子散射,從而使氮化鋁陶瓷熱導率急劇降低。
致密度
根據氮化鋁的熱傳導性能,低致密度的樣品存在的大量氣孔,會影響聲子的散射,降低其平均自由程,進而降低氮化鋁陶瓷的熱導率。同時,低致密度的樣品其機械性能也可能達不到相關應用要求。因此,高致密度是氮化鋁陶瓷具有高熱導率的前提。
顯微結構
氮化鋁陶瓷的顯微組織結構與其熱力學性能有著一一對應,顯微結構包括晶粒尺寸、形貌和晶界第二相的含量及分布等。實際的氮化鋁陶瓷為多相組成的多晶體,它主要由氮化鋁晶相、鋁酸鹽第二相(晶界相)以及氣孔等缺陷組成。除了對氮化鋁的晶格缺陷進行研究外,許多人還對氮化鋁的晶粒、晶界形貌、晶界相的組成、性質、含量、分布、以及它們與熱導率的關系進行了廣泛研究,一般認為鋁酸鹽第二相的分布對熱導率的影響最為重要。
提高氮化鋁陶瓷熱導率的途徑
提高氮化鋁粉末的純度
理想的氮化鋁粉料應含適量的氧。除氧以外,其他雜質元素如Si、Mn和Fe等,也能進入氮化鋁晶格,造成缺陷,降低氮化鋁的熱導率。雜質進入晶格后,使晶格發生局部畸變,由此產生應力作用,引起位錯、層錯等缺陷,增大聲子散射,故應該提高氮化鋁的粉末的純度。
改進氮化鋁粉末合成方法,制備出粒徑在1μm以下,含氧量1%的高純粉末,是制備高導熱氮化鋁陶瓷的前提。此外,對含燒結助劑的氮化鋁粉末,引入適量的碳,在制備氮化鋁陶瓷的燒結過程中,于致密化之前,先對氮化鋁粉末表面的氧化物進行還原碳化,也能使氮化鋁陶瓷的熱導率提高。
加入適當的燒結助劑
引入添加劑主要有兩方面的作用:(1)促進氮化鋁陶瓷致密化。氮化鋁是共價化合物,具有熔點高、自擴散系數小的特點,一般難以燒結致密,使用添加劑可以在較低溫度產生液相,潤濕晶粒,從而達到致密化。(2)凈化晶格。氮化鋁低氧有很強的親和力,晶格中經常固溶了氧,產生鋁空位,降低了聲子的平均自由程,熱導率也因此降低。合適的添加劑可以有效與晶格中氧反應生成第二相,凈化晶格,提高熱導率。
大量的研究表明,稀土金屬氧化物和氟化物、堿土金屬氧化物和氟化物等均可以作為助燒劑提高氮化鋁的熱導率。但添加劑的量應適當,過多會增加雜質含量,從而影響熱導率;過少又起不到燒結助劑的作用。復合助劑比單一的添加劑能更有效的提高熱導率,同時還能降低燒結溫度。
選擇合適的燒結工藝
致密度對氮化鋁陶瓷的熱導率有重要影響,致密度較低的氮化鋁陶瓷很難有較高的熱導率,因此必須選擇合適的燒結工藝實現氮化鋁陶瓷的致密化。
常壓燒結:常壓燒結的燒結溫度通常為1600℃至2000℃,當添加了Y2O3燒結助劑后,氮化鋁粉會產生液相燒結,燒結溫度一般在1700℃至1900℃,特別是1800℃最常用,保溫時間為2h。燒結溫度還要受到氮化鋁粉粒度、添加劑含量及種類等的影響。熱壓溫度相對能低一些,一般是在1500℃至1700℃,保溫時間為0.5h,施加的壓力為20MPa左右。在1500℃至1800℃范圍內,提高氮化鋁燒結溫度通常會顯著提高氮化鋁燒結體的導熱率和致密度,特別是在常壓燒結時,這種影響更為顯著。
熱壓燒結:熱壓燒結是指在機械壓力和溫度同時作用下,對粉料進行燒結獲得致密塊體的過程。熱壓燒結可以使加熱燒結和加壓成型同時進行。在高溫下坯體持續受到壓力作用,粉末原料處于熱塑性狀態,有利于物質的擴散和流動,并且外加壓力抵消了形變阻力,促進了粉末顆粒之間的接觸。熱壓燒結可以降低氮化鋁陶瓷的燒結溫度,而且不用燒結助劑也能使氮化鋁燒結致密,且除氧能力強,但是缺點是設備昂貴,而且只能制備形狀簡單的樣品。
微波燒結:微波燒結是利用微波與介質的相互作用產生介電損耗使坯體整體加熱的燒結方法。同時,微波可以使粉末顆粒活性提高,有利于物質的傳遞。微波燒結已成為一門新型的陶瓷燒結技術,它利用整體性自身加熱,使材料加熱的效率提高,升溫速度加快,保溫時間縮短,這有利于提高致密化速度并可以有效抑制晶粒生長,獲得獨特的性能和結構。
放電等離子燒結:放電等離子燒結系統利用脈沖能、放電脈沖壓力和焦耳熱產生的瞬間高溫場來實現燒結過程。SPS升溫速度快、燒結時間短、能在較低溫度下燒結,通過控制燒結組分與工藝能實現溫度梯度場,可用于燒結梯度材料及大型工件等復雜材料。放電等離子燒結內每個顆粒均勻的自身發熱使顆粒表現活化,因而具有很高的熱導率,可在短時間內使燒結體致密化。
熱處理
熱處理是氮化鋁陶瓷調整結構、改善性能的重要措施,最主要的作用是減少晶界第二相,從而提高熱導率。Sang-Kee Lee等采用長時間燒結的方法制備消除晶界相的氮化鋁陶瓷,在還原性N2氣氛下以Y2O3為添加劑1900℃℃燒結100h,致密和拋光表面的熱導率為219-318W/(m·K)。
參考資料:
袁文杰、李曉云等.高導熱氮化鋁陶瓷的研究進展
燕東明、高曉菊等.高熱導率氮化鋁陶瓷研究進展
何慶.納米氮化鋁粉末的制備、燒結及性能研究
楊清華.低溫燒結高熱導氮化鋁陶瓷及其熱傳導性能研究
魯慧峰.氮化鋁粉末制備及注射成型研究
陳淑文.AlN粉體的合成與燒結機制研究
(中國粉體網編輯整理/初末)
注:圖片非商業用途,存在侵權告知刪除